If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-19X+71=0
a = 1; b = -19; c = +71;
Δ = b2-4ac
Δ = -192-4·1·71
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{77}}{2*1}=\frac{19-\sqrt{77}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{77}}{2*1}=\frac{19+\sqrt{77}}{2} $
| 7x-4-5x=6+2x | | 3x-4=x+9=9x | | 2x-4=2x-9=180 | | –10−4w=10−2w | | 20x+10=(5)(10) | | -8+2x=10-x | | 5(x+4)+10=-20 | | 5(x+16)=40 | | 2(x-7)-20=-38 | | 8(x+13)+16=72 | | 8(x+3)+14=54 | | D^4y+2D^2y+y=0 | | 32x+1-3x+2=162 | | 8(x+11)-13=67 | | 4.5/x=0.09 | | 8(x+7)+17=89 | | 0.5x+4/1.2+6=5/3 | | 7(x+10)-8=111 | | x/x²-6x+8=1/x-4+x/x-2 | | 18-(x-4)=32 | | Y=-16t^2+18t+5 | | 4x+5-x=15+x-2 | | 4(x+8)-15=21 | | 45(x+1)=-18 | | 896=14(b)^6 | | 7z-12=16 | | 4(x-20)=25 | | 3=5q | | 12+s=45 | | u-13+2=12 | | 4(0.5f-0.25)=6+f4(0.5f−0.25) | | 12x+5=14-5 |